If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-2c+1=11
We move all terms to the left:
c^2-2c+1-(11)=0
We add all the numbers together, and all the variables
c^2-2c-10=0
a = 1; b = -2; c = -10;
Δ = b2-4ac
Δ = -22-4·1·(-10)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{11}}{2*1}=\frac{2-2\sqrt{11}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{11}}{2*1}=\frac{2+2\sqrt{11}}{2} $
| 12-6x=9x-18 | | x/2.4=8.4 | | 3x-7=1+x | | -3y=5y+8 | | 72+x+2x+1=180 | | ½b+⅓b–20=–10 | | –9f−2=–10f | | 13-w=14 | | 10n+5=6.50 | | 95=12p | | 4=1.5x+5 | | (54)+(44)=x | | 12p=95 | | X+33=5x+69 | | (x+1)^2=144 | | (n+1)^2=144 | | 22=1/2(x+6) | | 2.83+3h=18.73 | | (x+40)/2=30 | | 19+p=14 | | n/4+11.2=14.77 | | 5x-98=46+11x | | 9x-16=6x-11 | | (x+40/2)=30 | | 123=(11x-8) | | 3b-2=8b+3 | | -3(n-12)=9 | | 9x-6•x-4= | | t/3-(-3.54)=6.54 | | 5x-180=180 | | 10w-4=5w+21 | | (x+80)/5=48 |